

DB-003-001618

Seat No.

B. Sc. (Sem. VI) (C.B.C.S.) Examination

April / May - 2015

Mathematics: Paper - BSMT-603(A)

(Optimization & Num. Analysis - II)

Faculty Code : 003 Subject Code : 001618

Time : $2\frac{1}{2}$ Hours]

[Total Marks: 70

Instructions: (i) All the questions are compulsory.

(ii) Write answers of MCQs in your answer book.

1 Answer the following:

20

- (1) Optimum values of the objective functions of primal and dual LPP problems are
 - (A) Always equal
- (B) Never equal
- (C) Sometimes equal
- (D) None of these
- (2) The NWCM (North West Corner Method) to solve a transportation problem is one of the methods for finding
 - (A) Optimum solution
 - (B) Degenerate solution
 - (C) An initial basic feasible solution
 - (D) None of these
- (3) The Hungarian method for solving an Assignment Problem was given by
 - (A) Charles Babbage
- (B) Bob Simplex
- (C) Optimal Rose
- (D) None of these
- (4) A function f(x) on $\phi \neq S \subset \mathbb{R}^n$ is said to be concave if
 - (A) -f(x) is also concave
- (B) f(x) is also convex
- (C) -f(x) is convex
- (D) None of these

(5)	A lii	near function $Z = 3x$	$x, x \in R$	\mathbf{r}^n is	always
	(A)	Concave			
	(B)	Convex			
	(C)	Convex or Concave	alwa	ays	
	(D)	None of these			
(6)	The	method of penalties	s is a	lso k	known as
	(A)	Big-M method			
	(B)	Two phase method			
	(C)	Biggest method to	solve	LPI	P
	(D)	None of these			
(7)	A ba	asic solution of the	syste	m is	called degenerate if
	(A)	One or more of ba	sic va	ariab	les vanish
	(B)	None of basic varia	ables	vani	shes
	(C)	All the basic varia	bles	vanis	sh
	(D)	None of these			
(8)		olution of a general	LPP	is s	aid to be a feasible
	(A)	It satisfies inequali	ities		
	(B)	It satisfies the non	ı-nega	ative	restrictions too
	(C)	It satisfies only eq	ualiti	es	
	(D)	None of these			
(9)	The	original LPP from	whicl	n the	e dual LPP is obtained
	is kı	nown as			
	(A)	Main LPP		(B)	Auxiliary LPP
	(C)	Primal LPP		(D)	None of these
(10)	The	dual of the dual of	f an I	LPP	is
	(A)	Dual		(B)	Primal
	(C)	Second order dual		(D)	None of these
DB-003-0	0161	8]	2		[Contd

(11)	In r	numerical differentiation, we make use of Gregory-
	New	ton's backward interpolation formula if
	(A)	Values of x are equispaced
	(B)	Values of x are not equispaced
	(C)	the derivative is required near the end of the table

- (12) Laplace-Everett's interpolation formula is a ____ formula.
 - (A) Forward Interpolation (B) Backward Interpolation
 - (C) Central Interpolation (D) None of these
- (13) The process of finding the value of the argument corresponding to a given value of the function, one can apply
 - (A) Gauss Forward Interpolation

(D) in case of (A) and (C)

- (B) Gauss Backward Interpolation
- (C) Lagrange's Method
- (D) None of these
- (14) Bessel's formula is better suited if
 - (A) $p > \frac{1}{2}$

- (B) $p > \frac{1}{5}$
- (C) $\frac{-1}{4}$
- (D) None of these
- (15) Numerical differentiation should be performed if it is clear from the tabulated values that
 - (A) differences of some order are constant
 - (B) differences of any order are not constant
 - (C) either in case of (A) or (B) $\,$
 - (D) None of these

	(A)	f is either univaria	ate or mul	ltivariate functio	on
	(B)	f is a multivariate	function		
	(C)	f is a univariate fu	unction		
	(D)	None of these			
(17)	То	derive Simpson's $\frac{1}{3}$	rule from	trapezoidal rule	e, we put
	n =	·			
	(A)	0	(B)	3	
	(C)	2	(D)	None of these	
(18)	diffe which	en a problem is formerential equations sach are prescribed for erential equation togown as	atisfying c r two or n	ertain given cor nore points, the	n the
	(A)	Initial value proble	e m		
	(B)	Boundary value pr	oblem		
	(C)	Both (A) and (B)			
	(D)	None of these			
(19)		apply Milne's metho y values prior to th			how
	(A)	Two	(B)	Three	
	(C)	Four	(D)	None of these	
(20)	То а	apply Simpson's $\frac{3}{8}$	rule to a	third degree pol	ynomial
	f(x),	the number of inte	rvals n m	ust be multiple	of
	(A)	2	(B)	3	
	(C)	8	(D)	None of these	
DB-003-0	0161	8]	4		[Contd

(16) Numerical integration of a function f is known as

quadrature if

- 2 (a) Answer any three:
 - (i) Define: Objective function
 - (ii) Define: Concave function
 - (iii) Define: Basic feasible solution
 - (iv) Define: Unbalanced transportation problem
 - (v) Write matrix form of an assignment problem
 - (vi) What is Simplex algorithm?
 - (b) Answer any three:

9

6

- (i) Write canonical form of an LPP.
- (ii) Write mathematical form of a general transportation problem.
- (iii) Explain: Least cost method.
- (iv) Explain mathematical form of an assignment problem.
- (v) Write the associated dual problem of the following LPP:

Maximize $Z = 4x_1 + 2x_2$

Subject to $x_1 + x_2 \ge 3$

$$x_1 - x_2 \ge 2$$

where $x_1, x_2 \ge 0$

- (vi) Explain optimality test of a solution of a Transportation Problem.
- (c) Answer any two:

10

(1) Solve the following LPP by using Simplex method:

Maximize $Z = 3x_1 + 2x_2$

Subject to $x_1 + x_2 \le 4$

$$x_1 - x_2 \le 2$$

where $x_1, x_2 \ge 0$

(2) Use two-phase Simplex method to

Maximize $Z = 5x_1 - 4x_2 + 3x_3$

Subject to $2x_1 + x_2 - 6x_3 = 20$

$$6x_1 + 5x_2 + 10x_3 \le 76$$

$$8x_1 - 3x_2 + 6x_3 \le 50$$

where $x_1, x_2, x_3 \ge 0$

(3) By using Big-M method solve the following LPP optimally:

Maximize
$$Z = 2x_1 + x_2 + 3x_3$$

Subject to
$$x_1 + x_2 + 2x_3 \le 5$$

$$2x_1 + 3x_2 + 4x_3 = 12$$

where $x_1, x_2, x_3 \ge 0$

- (4) Explain Hungarian method to solve an assignment problem.
- (5) Solve the following transportation problem optimally:

From	То			Available
	A	В	C	
I	6	8	4	14
II	4	9	8	12
III	1	2	6	05
Demand	06	10	15	

3 (a) Answer any three:

6

- (i) Define: Interpolation.
- (ii) State any two properties of divided difference.
- (iii) What is the main drawback of Lagrange's interpolation formula?
- (iv) Define: Numerical integration.
- (v) Write general quadrature formula.
- (vi) Write algorithm of Runge-Kutta method of second order.
- (b) Answer any three:

9

- (i) If $f(x) = x^3 9x^2 + 17x + 6$, compute f(-1,1,2).
- (ii) Find f(x) by Lagrange's formula if f(0) = 648,

$$f(2) = 704$$
, $f(3) = 729$, $f(6) = 792$.

- (iii) Use Laplace-Everett's formula to obtain f(1.15)given that f(1)=1.000, f(1.1)=1.049, f(1.2)=1.096, f(1.3)=1.140.
- (iv) By using Newton's forward difference formula, derive $D^3 y_0 = \frac{1}{h^3} \left[\Delta^3 y_0 \frac{3}{2} \Delta^4 y_0 + \frac{7}{4} \Delta^5 y_0 \dots \right]$
- (v) Derive: Trapezoidal rule.
- (vi) Estimate the length of the arc of the curve $3y = x^3$ from (0,0) to (1,3) using Simpson's $\frac{1}{3}$ rule taking eight sub-intervals.
- (c) Answer any two:

10

- (i) Derive Gauss forward interpolation formula.
- (ii) Derive Bessel's interpolation formula.
- (iii) Calculate f'(90) and the maximum value of the function by using Stirling's formula from the following data:

x	60	75	90	105	120
f(x)	28.2	38.2	43.2	40.9	37.7

- (iv) Evaluate $\int_{0}^{10} \frac{dx}{1+x^2}$ by using Simpson's $\frac{3}{8}$ rule.
- (v) Use Runge-Kutta method of order four to find y at x = 0.1 and x = 0.2 given that, x(dy+dx) = y(dx-dy); y(0)=1.